Home Search Collections Journals About Contact us My IOPscience

Anisotropic thermal expansion in rare earth intermetallic compounds  $RZn_2$  with R=Gd, Tb and Dy

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys.: Condens. Matter 7 6809

(http://iopscience.iop.org/0953-8984/7/34/006)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.151 The article was downloaded on 12/05/2010 at 21:59

Please note that terms and conditions apply.

# Anisotropic thermal expansion in rare earth intermetallic compounds $RZn_2$ with R = Gd, Tb and Dy

S Ohta<sup>†</sup>, T Kitai<sup>‡</sup> and T Kaneko<sup>§</sup>

† Hachinohe Institute of Technology, Hachinohe-shi, Aomori 031, Japan

‡ Department of Applied Physics, Kyushu Institute of Technology, Tobata-ku, Kitakyushu-shi 804, Japan

§ Institute for Materials Research, Tohoku University, Sendai-shi, Miyagi 980, Japan

Received 13 February 1995, in final form 12 May 1995

Abstract. We have measured the lattice parameters a(T), b(T) and c(T) as a function of temperature T in the range 15 K < T < 300 K for RZn<sub>2</sub> (R = Gd, Tb or Dy) with the CeCu<sub>2</sub>-type crystal structure. Anisotropic thermal expansion is observed in the a(T), b(T) and c(T) against T plots for all materials investigated below the magnetic transition temperatures  $T_{tr}$ . The linear expansivity above  $T_{tr}$  along the b direction becomes small on varying the rare earth atom R in RZn<sub>2</sub> from R = Gd to Dy to Tb. The sign of the change in c,  $\Delta c/c$ , for GdZn<sub>2</sub> below  $T_{tr}$  is positive while those for TbZn<sub>2</sub> and DyZn<sub>2</sub> are negative. The cell volume in all materials expands when magnetic orderings appear. The obtained results are qualitatively understood in terms of the phenomenological model in which the crystal field and magnetic exchange contributions to the thermal expansion are taken into account.

### 1. Introduction

Rare earth (R) intermetallic compounds  $RZn_2$  (R = Gd, Tb and Dy) crystallize in the orthorhombic CeCu<sub>2</sub>-type structure [1] in which the R atoms occupy the 4e sites and the Zn atoms the 8h ones, as shown in figure 1(a). As one of the features in this structure, R atoms form a zig-zag chain along the *b* axis which is doubly separated by Zn layers (figure 1(b)). Since the atomic arrangement of R atoms in the CeCu<sub>2</sub>-type structure has a low-dimensional character, it appears that the crystal field around R atoms for the orthorhombic symmetry is different from that for the cubic one.

For the measurements of magnetization and magnetic susceptibility against temperature (T), GdZn<sub>2</sub> is ferromagnetic with the Curie temperature  $T_C = 68$  K [2] while TbZn<sub>2</sub> and DyZn<sub>2</sub> are antiferromagnetic with the Néel temperatures  $T_N = 75$  K [3] and 35 K [4], respectively. The paramagnetic Curie temperatures  $\theta_p$  for polycrystalline samples of RZn<sub>2</sub> with R = Ce-Tm are positive even though the materials are antiferromagnetic [4]. Such a magnetic behaviour has been understood on the basis of the Rudermann-Kittel-Kasuya-Yosida (RKKY) theory [4]. Neutron diffraction study [5] for single-crystal DyZn<sub>2</sub> has revealed that the magnetic moments for Dy at 4.2 K are ferromagnetically aligned within the basal plane and antiferromagnetically stacked along the c direction. In DyZn<sub>2</sub>, the magnetic moment of Dy at 4.2 K is 9.7  $\mu_B$  [5] which is close to that expected for a tripositive free ion Dy<sup>3+</sup>. The values of  $\theta_p$  for the a and b axes in a single crystal field effect plays an important role in anisotropic magnetic properties of RZn<sub>2</sub>, which is similar to that in the case [7, 8] of RCu<sub>2</sub>.



Figure 1. (a) The unit cell of the orthorhombic CeCu<sub>2</sub>-type crystal structure and (b) the atomic arrangement of the rare earth and zinc atoms in the b-c plane, in which four unit cells are depicted. Here, open and closed circles indicate the rare earth and zinc atoms, respectively.

Recently, the influence of the crystal field on the anisotropic thermal expansion in RCu<sub>2</sub> (R = Nd [9, 10], Sm [11], Er [10, 12] and Tm [12, 13]) with the CeCu<sub>2</sub>-type structure has been intensively investigated from the viewpoint of the relation between magnetic properties and the crystal field effect. The anisotropic thermal expansion behaviour above the magnetic transition temperature was well explained in terms of the temperature behaviour of the thermal average of the second-order crystal field parameters. In  $RZn_2$  (R = Gd, Tb or Dy), the values of a and b among the lattice parameters a, b and c at room temperature decrease with varying R from R = Gd to Tb to Dy while that of c hardly depends on R [14]. On the other hand, all values of a, b and c in RCu<sub>2</sub> with R = Gd, Tb or Dy decrease with varying R [15]. The variation of c with R in RZn<sub>2</sub> is strikingly different from that in the case of RCu<sub>2</sub>. This suggests that the crystal field effect on magnetic properties in RZn<sub>2</sub> with Tb and Dy is strongly correlated to the crystallographic character along the a, b or c direction. It is of interest to investigate the origin of the appearance of various magnetic ordering in RZn<sub>2</sub> from the viewpoint of the crystal field effect on the thermal expansion. So far, magnetic properties of RZn2 have been extensively investigated. However, little is known of the thermal expansion behaviour for RZn<sub>2</sub> from the above point of view, in comparison with the case of RCu<sub>2</sub>. The purpose of the present paper is to present the preliminary measurement on the thermal expansion for  $RZn_2$  (R = Gd, Tb or Dy) and to present a simple expression on the basis of the phenomenological model in order to explain the obtained results.

# 2. Experimental procedures

Polycrystalline samples were prepared in the same way as reported previously [5]. The values of a, b and c and cell volume V at room temperature are summarized in table 1. These values are consistent with the reported ones [14]. The measurement of a(T), b(T)

and c(T) at various temperatures was carried out in the temperature range between 18 K and about 300 K using a powder x-ray diffraction method with graphite-monochromatized Cu K $\alpha$  radiation. The temperature was controlled to within  $\pm 0.2$  K using a silicon diode thermometer attached close to the sample and using a helium gas closed cycle refrigerator. In order to calibrate the scattering angle in the present experiment, the sample was well mixed with Si powder (99.99% pure) as an internal standard whose thermal expansion was taken from [16].

Table 1. Values of lattice parameters a, b, and c and cell volume V for RZn<sub>2</sub> (R = Gd, Tb and Dy).

| RZn <sub>2</sub>  | a<br>(Å) | b<br>(Å) | с<br>(Å) | V<br>(Å <sup>3</sup> ) |  |
|-------------------|----------|----------|----------|------------------------|--|
| GdZn <sub>2</sub> | 4.5094   | 7.2280   | 7.5907   | 247.41                 |  |
| TbZn <sub>2</sub> | 4.4897   | 7.1468   | 7.5927   | 243.62                 |  |
| DyZn <sub>2</sub> | 4.4720   | 7.0880   | 7.5951   | 240.75                 |  |

The coefficient of the linear thermal expansion  $\alpha_L$  (L = a, b or c) is estimated by the least-squares fitting for a linear equation L(T) = f + gT in the temperature interval about 30 K and by differentiating L(T) with respect to T. Here f and g are the fitting parameters. The value of the volumetric expansivity  $\beta$  is similarly estimated in the same way as that of  $\alpha_L$ .

#### 3. Results

The temperature dependences of a(T), b(T) and c(T) for GdZn<sub>2</sub> are shown in figure 2. As T increases, a(T) increases up to about 60 K and then more gradually increases up to about 300 K. A feeble kink around 60 K is observed on the temperature derivative of c, dc/dT, against T plots within the experimental accuracy. On the other hand, b(T) and c(T)decrease up to about 60 K above which both increase smoothly up to about 300 K. The temperature where the b(T) and c(T) against T plots exhibit a minimum around about 60 K corresponds well to the reported value [2] of  $T_C$  (= 68 K). Hence, it is considered that the anomalous thermal expansion below about 60 K is due to the appearance of ferromagnetic ordering. From this, the value of  $T_C$  is determined to be  $(60 \pm 2)$  K. Below  $T_C$ , the relative change in a below and above  $T_C$ ,  $\Delta a/a$ , is small and negative while those in b and c are both large and positive. Here,  $\Delta L/L$  (L = a, b and c) represents the change in lattice parameter at 0 K and is defined by the following expression:

$$\Delta L/L = [L_0(T < T_C) - L_0(T > T_C)]/L_0(T > T_C)$$

where  $L_0(T < T_C)$  and  $L_0(T > T_C)$  are estimated from the straight extrapolation line from the ferromagnetic state  $(T < T_C)$  and the paramagnetic one  $(T > T_C)$  to 0 K, respectively. From the results of L(T) (L = a, b or c) in the temperature range above  $T_C$ , the values of  $\alpha_a$ ,  $\alpha_b$  and  $\alpha_c$  above  $T_C$  are summarized in table 2. As seen in figure 3, V(T) decreases with increasing T up to about 60 K and then increases linearly. The value of  $\beta$  above  $T_C$ is also given in table 2.

Figure 4 shows the temperature dependences of a(T), b(T) and c(T) for TbZn<sub>2</sub>. As seen in the figure, a(T) for TbZn<sub>2</sub> decreases up to about 55 K and then increases up to about 85 K with increasing T. Above about 85 K, a(T) increases more slowly with increasing T. The temperature where the a(T) against T plots exhibit a minimum around about



Figure 2. The temperature dependences of lattice parameters a, b and c for GdZn<sub>2</sub>. The downward arrows indicate  $T_c$ . The solid lines are guides for the eye.

**Table 2.** Values of linear thermal expansivity for the principal axes,  $\alpha_a$ ,  $\alpha_b$  and  $\alpha_c$ , and volumetric expansivity  $\beta$  for RZn<sub>2</sub> (R = Gd, Tb and Dy). Units are 10<sup>-5</sup> K<sup>-1</sup>.

| RZn <sub>2</sub>                                   | α <sub>a</sub>                                        | αμ                                                            | α <sub>c</sub>                                                | β                                                     |
|----------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|
| $GdZn_2$<br>TbZn <sub>2</sub><br>DyZn <sub>2</sub> | $0.85 \pm 0.03$<br>$0.64 \pm 0.04$<br>$0.90 \pm 0.03$ | $1.94 \pm 0.03$<br>$0.53 \pm 0.02$<br>$0.98 \pm 0.04$         | $2.39 \pm 0.01$<br>$2.03 \pm 0.04$<br>$2.24 \pm 0.04$         | $5.18 \pm 0.08$<br>$3.20 \pm 0.05$<br>$4.12 \pm 0.08$ |
| TbZn <sub>2</sub><br>DyZn <sub>2</sub>             | $0.64 \pm 0.04$<br>$0.90 \pm 0.03$                    | $\begin{array}{c} 0.53 \pm 0.02 \\ 0.98 \pm 0.04 \end{array}$ | $\begin{array}{c} 2.03 \pm 0.04 \\ 2.24 \pm 0.04 \end{array}$ | $3.20 \pm 0$<br>$4.12 \pm 0$                          |

55 K corresponds well to the value of  $T_t$  (= 60 K) where the magnetic structure changes from a linear transverse sinusoidal spin structure to an antiferromagnetic one in a neutron diffraction study [3]. Furthermore, one can see a kink around about 85 K on the a(T)against T plots. According to the preliminary measurement of magnetic properties [17] for single-crystal TbZn<sub>2</sub>, a sharp peak around 85 K was observed on the magnetic susceptibility against T plots. This peak was assigned to the Néel temperature. Therefore, it is considered that the temperature where da(T)/dT changes around about 85 K corresponds to the value of  $T_N$ . As T increases, b(T) decreases up to about 85 K and then increases up to about 300 K. However, a feeble kink around about 55 K and 85 K is observed on the dc(T)/dTagainst T plots. Above about 90 K, c(T) increases monotonically up to about 300 K. Then,



Figure 3. The temperature dependence of cell volume for  $RZn_2$  with R = Gd, Tb and Dy. The downward and upward arrows indicate  $T_C$  or  $T_N$  and  $T_t$ , respectively. The solid lines are guides for the eye.

the values of  $T_t$  and  $T_N$  are determined to be  $(55 \pm 2)$  K and  $(85 \pm 2)$  K, respectively, in the present study. In the range  $T < T_t$ , the signs of  $\Delta a/a$  and  $\Delta c/c$  are negative while that of  $\Delta b/b$  is positive. The values of  $\alpha_a$ ,  $\alpha_b$  and  $\alpha_c$  above  $T_N$  for TbZn<sub>2</sub> are summarized in table 2. As T increases, V(T) for TbZn<sub>2</sub> decreases up to about 55 K and then increases up to about 85 K (figure 3). Around 85 K, a feeble kink is observed on the V(T) against T plots. As T further increases, V(T) increases up to about 300 K. The value of  $\beta$  above  $T_N$  for TbZn<sub>2</sub> is also given in table 2.

Figure 5 shows the temperature dependences of a(T), b(T) and c(T) for DyZn<sub>2</sub>. As T increases, a(T) and b(T) both decrease up to about 40 K and then increase linearly up to about 300 K. On the other hand, c(T) increases steeply with increasing T up to about 40 K and then increases more slowly up to about 300 K. The temperature where the a(T), b(T) and c(T) against T plots exhibit a kink around about 40 K corresponds well to the value of  $T_N$  (= 38 K [3]). Then, it is considered that the anomalous thermal expansion is due to the appearance of antiferromagnetic ordering. In the present study, the value of  $T_N$  is determined to be  $(40 \pm 2)$  K. For  $T < T_N$ , the signs of  $\Delta a/a$  and  $\Delta b/b$  are positive while that of  $\Delta c/c$  is negative. As seen in figure 3, V(T) for DyZn<sub>2</sub> decreases with increasing T up to about 40 K and then it increases with increasing T. The values of  $\alpha_a$ ,  $\alpha_b$  and  $\alpha_c$  and  $\beta$  above  $T_N$  are summarized in table 2.



Figure 4. The temperature dependences of lattice parameters a, b and c for TbZn<sub>2</sub>. The downward and upward arrows indicate  $T_N$  and  $T_t$ , respectively. The solid lines are guides for the eye.

## 4. Discussion

#### 4.1. The spatial dependence of exchange interactions

Thermal expansion studies for RCu<sub>2</sub> (R = Nd [9, 10], Sm [11], Er [10, 12], Tm [12, 13]) have demonstrated that the temperature dependence of the *b* axis is closely connected with the atomic arrangement of the R atoms in this direction, as seen in figure 1(b). In the CeCu<sub>2</sub>-type structure, the nearest-neighbour distance between R atoms along the *b* direction,  $r^b$ , is shorter than the next-nearest-neighbour ones between R atoms along the *a* and *c* directions,  $r^a$  and  $r^c$ , respectively. Here,  $r^L$  (L = a, *c*) and  $r^b$  are given by  $r^L = [(a/2)^2 + (0.5 - 2\delta)^2 c^2]^{1/2}$ (L = a or *c*) and  $r^b = [(b/2)^2 + (2\delta c)^2]^{1/2}$ , respectively, where *a*, *b* and *c* are the values at room temperature and  $\delta$  represents the difference between a positional parameter *z*(R) and an ideal position for an R atom and is given by  $\delta = z(R) - 0.5$ . The evaluated values of  $r^L$  (L = a, b and *c*) for RZn<sub>2</sub> (R = Gd, Tb and Dy) are summarized in table 3. Here, the value of *z*(Dy) (= 0.537) [5] for a Dy atom is used in calculating  $r^L$ . As seen in table 3, the value of  $r^b$  decreases with varying R in RZn<sub>2</sub> from R = Gd to Tb to Dy while those of  $r^a$  and  $r^c$  remain nearly constant.

The values of  $\theta_p$ , as a measure of exchange integral, for polycrystalline samples of RZn<sub>2</sub>



Figure 5. The temperature dependences of lattice parameters a, b and c for DyZn<sub>2</sub>. The downward arrows indicate  $T_N$ . The solid lines are guides for the eye.

**Table 3.** Values of the nearest-neighbour distance between R atoms along the b direction,  $r^b$ , and the next-nearest-neighbour distance between R atoms along the a and c directions,  $r^a$  and  $r^c$ , respectively, for RZn<sub>2</sub> (R = Gd, Tb and Dy).

| RZn <sub>2</sub>  | $r^{\alpha}$ or $r^{c}$<br>(Å) | r <sup>b</sup><br>(Å) |
|-------------------|--------------------------------|-----------------------|
| GdZn <sub>2</sub> | 3.96                           | 3.65                  |
| TbZn <sub>2</sub> | 3.95                           | 3.61                  |
| DyZn <sub>2</sub> | 3.95                           | 3.59                  |

and RCu<sub>2</sub> are tentatively plotted as a function of  $r^b$ , from which we can estimate the spin polarization between R atoms against r. Here,  $\theta_p = (\theta_p^a + \theta_p^b + \theta_p^c)/3$  where  $\theta_p^L$  (L = a, b or c) refers to the paramagnetic Curie temperatures along each principal axis. The inset of figure 6 shows the values of  $\theta_p$  for RCu<sub>2</sub> as a function of  $r^b$ , where z(Ce) = 0.5377[1] in CeCu<sub>2</sub> is used in calculating  $r^b$ . The data for  $\theta_p$  and the lattice parameters at room temperature are mainly taken from [7], [8] and [15] except those for TmCu<sub>2</sub> [13]. As seen from the  $\theta_p$  against r plots for RCu<sub>2</sub>, the sign of  $\theta_p$  varies from positive to negative as r increases. Similarly, the values [2,3] of  $\theta_p$  against  $r^b$  for RZn<sub>2</sub> are plotted in the same figure (see the inset of figure 6). The value of  $\theta_p$  for RZn<sub>2</sub> increases up to that for GdZn<sub>2</sub> ( $\theta_p = 70$  K;  $r^b = 3.65$  Å) and then decreases with increasing  $r^b$ . It is noted that the up-down behaviour of  $\theta_p$  for RZn<sub>2</sub> against r is remarkably different from that for RCu<sub>2</sub>. From the  $\theta_p$ -r plots for RZn<sub>2</sub>, the ferromagnetic exchange interaction couples with R atoms in the same distance range 3.5 Å < r < 3.9 Å and its magnitude is strongly spatially dependent on the distance between R atoms along the b direction. In comparison with the  $\theta_p$ -r plots for RCu<sub>2</sub>, the up-down behaviour in RZn<sub>2</sub> implies that the RKKY interaction has a predominant role in the magnetic properties of RZn<sub>2</sub>. Under these situations, the positive thermal expansion along the b direction in all cases of RZn<sub>2</sub> investigated is expected in the temperature range below  $T_{tr}$ .



Figure 6. The temperature dependence of lattice parameters c for RZn<sub>2</sub> with R = Gd, Tb and Dy. The inset shows the paramagnetic Curie temperature  $\theta_p$  for polycrystalline samples of RCu<sub>2</sub> (open circles) and RZn<sub>2</sub> (open squares) as a function of distance r. Data for RCu<sub>2</sub> and RZn<sub>2</sub> are mainly taken from [7] and [8], and [4], respectively. The solid lines are guides for the eye.

#### 4.2. The phenomenological model

In the previous studies [9–13] of the thermal expansion in RCu<sub>2</sub>, it has been shown that the thermal expansion in the paramagnetic temperature range is well explained in terms of the contributions originating form the crystal field and magnetoelastic interactions. First, we describe the crystal field and magnetoelastic Hamiltonians and elastic energy which are similar expressions to those proposed in the previous studies [9–13] of thermal expansion for RCu<sub>2</sub>. In the unstrained lattice, the crystal field (CF) Hamiltonian  $H_{CF}$  is [18]  $H_{CF}(\varepsilon = 0) = V_2^0 O_2^0(J) + V_2^2 O_2^2(J) + V_4^0 O_4^0(J) + V_4^2 O_4^2(J) + V_4^4 O_4^4(J) + V_6^0 O_6^0(J)$  Thermal expansion in RZn<sub>2</sub>

$$+V_6^2 O_6^2(J) + V_6^4 O_6^4(J) + V_6^6 O_6^6(J)$$
<sup>(1)</sup>

where  $V_i^J$  and  $O_i^m$  are the crystal field parameters and the Steven's operator equivalents with the total angular momentum quantum number J, respectively. In the strained lattice, the one-ion magnetoelastic (me) Hamiltonian  $H_{me}$  [19] for orthorhombic symmetry is

$$H_{me}(\varepsilon) = \varepsilon_1 (B_{10}^1 O_2^0 + B_{11}^1 O_2^2) + \varepsilon_2 (B_{20}^1 O_2^0 + B_{21}^1 O_2^2) + \varepsilon_3 (B_{30}^1 O_2^0 + B_{31}^1 O_2^2) + B^2 \varepsilon_4 (J_1 J_2 + J_2 J_1) + B^3 \varepsilon_5 (J_1 J_3 + J_3 J_1) + B^4 \varepsilon_6 (J_2 J_3 + J_3 J_2)$$
(2)

where  $B_{i0}^1$ ,  $B_{i1}^1$ ,  $B^2$ ,  $B^3$ ,  $B^4$  are the magnetoelastic coupling parameters,  $\varepsilon_i$  (i = 1-6) the component of the strain tensor and  $J_i$  the components of the total angular momentum operator. Within the harmonic hypothesis, the elastic (el) energy  $F_{el}$  is written [20] as

$$F_{el}(\varepsilon) = \frac{1}{2}(c_{11}\varepsilon_1^2 + c_{22}\varepsilon_2^2 + c_{33}\varepsilon_3^2) + c_{12}\varepsilon_1\varepsilon_2 + c_{13}\varepsilon_1\varepsilon_3 + c_{23}\varepsilon_2\varepsilon_3 + c_{44}\varepsilon_4^2 + c_{55}\varepsilon_5^2 + c_{66}\varepsilon_6^2$$
(3)

where  $c_{ij}$  are nine independent elastic constants for the orthorhombic symmetry.

The characteristic minimum as the influence of the crystal field in the paramagnetic temperature range has been observed in the thermal expansion of RCu<sub>2</sub> [9-13]. Such a thermal expansion behaviour was well explained in terms of  $H_{CF}(\varepsilon)$ ,  $H_{me}(\varepsilon)$  and  $F_{el}(\varepsilon)$ . However, a minimum behaviour in a(T), b(T) and c(T) for the present compounds has not been observed in the paramagnetic temperature range. This is the striking difference between the thermal expansion behaviour of  $RZn_2$  investigated presently and that of  $RCu_2$ . Although we have not considered the contribution from quadrupole pair interactions to thermal expansion, it has been pointed out that these interactions play an important role in the magnetically ordered state in rare earth equiatomic intermetallic compounds [21]. The crystal symmetry below and above  $T_{tr}$  in all RZn<sub>2</sub> investigated is the same as the orthorhombic one. Then, it is considered that the quadrupole pair interactions have a small contribution to the thermal expansion anomaly in the present system. Together with the considerations described in 4.1, the magnetic exchange contribution to the thermal expansion besides the CF and magnetoelastic ones may be important in anisotropic thermal expansion behaviour in RZn<sub>2</sub> (R = Gd, Tb, Dy) below  $T_{ir}$ . The magnetic measurements [6, 17] for  $RZn_2$  (R = Tb, Dy, Ho and Er) have revealed that the effective Bohr magneton per R ion is in good agreement with that expected in a respective free-ion value. These situations remind us of the exchangestriction in the localized system. In the present paper, we will propose the most simple expression in order to explain qualitatively the obtained results.

We assume that the anisotropic Heisenberg-type exchange (ex) Hamiltonian  $H_{ex}$  may be written as follows:

$$H_{ex}(\varepsilon) = \sum_{nn,1} I_1(\varepsilon_1) S_k \cdot S_l + \sum_{nn,2} I_2(\varepsilon_2) S_k \cdot S_l + \sum_{nn,3} I_3(\varepsilon_3) S_k \cdot S_l$$
(4)

where  $I_i(\varepsilon_i)$  is the directional- and the strain-dependent exchange integral between R atoms at sites k and l,  $S_k$  represents the spin of R at a site k and  $\sum_{nn,i}$  refers to summation over all pairs of nearest neighbours (nn) along the  $i \ (= 1, 2 \ \text{and } 3)$  direction. Here, we confine ourselves to consider only the strain along the principal axes. In the small-strain limit, we assume that  $I_i(\varepsilon_i) \ (i = 1, 2, 3)$  may be written, in a similar way to the study [22] of lattice deformation in MnO, as follows:

$$I_1(\varepsilon_1) = I_1(1 - \eta_1 \varepsilon_1) \tag{5a}$$

$$I_2(\varepsilon_2) = I_2(1 - \eta_2 \varepsilon_2) \tag{5b}$$

$$I_3(\varepsilon_3) = I_3(1 - \eta_3 \varepsilon_3) \tag{5c}$$

where  $I_i$  represents the exchange integral in the unstrained state and  $\eta_i$  is the dimensionless parameter  $\eta_i = -\partial \ln I_i / \partial \ln \varepsilon_i$ .

Hence, the total free energy  $F_{tot}(\varepsilon)$  as a function of a strain  $\varepsilon$  below  $T_{tr}$  is written as

$$F_{tot}(T,\varepsilon) = F_{me}(T,\varepsilon) + F_{ex}(T,\varepsilon) + F_{el}(\varepsilon)$$
(6)

where the first, second and third terms on the right-hand side are the magnetoelastic, exchange and elastic parts of the free energy, respectively. In (6), the magnetoelastic part  $F_{me}(T, \varepsilon)$  and the exchange one  $F_{ex}(T, \varepsilon)$  may be written in terms of  $H_{me}(\varepsilon)$  (2) and  $H_{ex}(\varepsilon)$  (4) as

$$F_{me}(T,\varepsilon) = -k_B T \ln[\operatorname{Trexp}(-H_{me}(\varepsilon)/k_B T)]$$

$$F_{ex}(T,\varepsilon) = -k_B T \ln[\operatorname{Trexp}(-H_{ex}(\varepsilon)/k_B T)]$$
(7)

where  $k_B$  is the Boltzmann constant. The equilibrium situation can be found by minimizing the total free energy (6) with respect to  $\varepsilon_i$ . In that case, it is noted that  $\partial F_{tot}(\varepsilon)/\partial \varepsilon_i = \langle \partial H_{tot}(\varepsilon)/\partial \varepsilon_i \rangle$ , where the angular brackets denote a thermal average over the ensemble. The equilibrium conditions for  $\varepsilon_1$ ,  $\varepsilon_2$  and  $\varepsilon_3$  are

$$\begin{aligned} \langle \partial H_{tot}(\varepsilon)/\varepsilon_1 \rangle + \partial F_{el}(\varepsilon)/\partial \varepsilon_1 &= 0 \\ \langle \partial H_{tot}(\varepsilon)/\varepsilon_2 \rangle + \partial F_{el}(\varepsilon)/\partial \varepsilon_2 &= 0 \\ \langle \partial H_{tot}(\varepsilon)/\varepsilon_3 \rangle + \partial F_{el}(\varepsilon)/\partial \varepsilon_3 &= 0. \end{aligned}$$

Substituting (1)-(4) yields three simultaneous linear equations in  $\varepsilon_1$ ,  $\varepsilon_2$  and  $\varepsilon_3$ :

$$c_{11}\varepsilon_{1} + c_{12}\varepsilon_{2} + c_{13}\varepsilon_{3} + B_{10}^{1}\langle O_{2}^{0}\rangle + B_{11}^{1}\langle O_{2}^{2}\rangle - I_{1}\eta_{1}\left(\sum_{nn,1}S_{k}\cdot S_{l}\right) = 0 \qquad (8a)$$

$$c_{12}\varepsilon_{1} + c_{22}\varepsilon_{2} + c_{23}\varepsilon_{3} + B_{20}^{1}\langle O_{2}^{0}\rangle + B_{21}^{1}\langle O_{2}^{2}\rangle - I_{2}\eta_{2}\left\langle\sum_{nn,2}S_{k}\cdot S_{l}\right\rangle = 0 \qquad (8b)$$

$$c_{13}\varepsilon_{1} + c_{23}\varepsilon_{2} + c_{33}\varepsilon_{3} + B_{30}^{1}\langle O_{2}^{0}\rangle + B_{31}^{1}\langle O_{2}^{2}\rangle - I_{3}\eta_{3}\left(\sum_{nn,3}S_{k}\cdot S_{l}\right) = 0.$$
(8c)

These equations may be written in the matrix form:

$$\begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{12} & c_{22} & c_{23} \\ c_{13} & c_{23} & c_{33} \end{pmatrix} \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \end{pmatrix} = - \begin{pmatrix} B_{10}^1 \langle O_2^0 \rangle + B_{11}^1 \langle O_2^2 \rangle - I_1 \eta_1 \Big\langle \sum_{nn,l} S_k \cdot S_l \Big\rangle \\ B_{20}^1 \langle O_2^0 \rangle + B_{21}^1 \langle O_2^2 \rangle - I_2 \eta_2 \Big\langle \sum_{nn,2} S_k \cdot S_l \Big\rangle \\ B_{30}^1 \langle O_2^0 \rangle + B_{31}^1 \langle O_2^2 \rangle - I_3 \eta_3 \Big\langle \sum_{nn,3} S_k \cdot S_l \Big\rangle \end{pmatrix}.$$
(9)

Note that the elastic compliance coefficient  $\kappa_{ji}$  is given [23] as a cofactor of  $c_{ij}/(\text{determinant}$  of the c); the equilibrium strain for  $\varepsilon_i^{eq}$  (i = 1, 2 and 3) is found to be

$$\varepsilon_{i}^{eq} = -(\kappa_{i1}B_{10}^{1} + \kappa_{i2}B_{20}^{1} + \kappa_{i3}B_{30}^{1})\langle O_{2}^{0}\rangle - (\kappa_{i1}B_{11}^{1} + \kappa_{i2}B_{21}^{1} + \kappa_{i3}B_{31}^{1})\langle O_{2}^{2}\rangle + \kappa_{i1}I_{1}\eta_{1}\Big\langle \sum_{n\pi,1} S_{k} \cdot S_{l} \Big\rangle + \kappa_{i2}I_{2}\eta_{2}\Big\langle \sum_{n\pi,2} S_{k} \cdot S_{l} \Big\rangle + \kappa_{i3}I_{3}\eta_{3}\Big\langle \sum_{n\pi,3} S_{k} \cdot S_{l} \Big\rangle$$
(10)

where  $\langle O_2^0 \rangle$  and  $\langle O_2^2 \rangle$  are the thermal average of  $O_n^m$  (m = 0, 2; n = 2) which has been given in [12]. If  $\xi_i$  is the number of nearest neighbours of any particular spin along the

*i* direction, then we could write  $\langle \sum_{nn,i} S_k \cdot S_l \rangle = \xi_i \langle S_k \cdot S_l \rangle$  (i = 1, 2, 3). Then (10) may be rewritten as

$$\varepsilon_{i}^{eq} = -(\kappa_{i1}B_{10}^{1} + \kappa_{i2}B_{20}^{1} + \kappa_{i3}B_{30}^{1})\langle O_{2}^{0}\rangle - (\kappa_{i1}B_{11}^{1} + \kappa_{i2}B_{21}^{1} + \kappa_{i3}B_{31}^{1})\langle O_{2}^{2}\rangle + (\kappa_{i1}I_{1}\eta_{1}\xi_{1} + \kappa_{i2}I_{2}\eta_{2}\xi_{2} + \kappa_{i3}I_{3}\eta_{3}\xi_{3})\langle S_{k} \cdot S_{l}\rangle$$
(11)

and finally the equilibrium strain in (11) leads to the expression

$$\varepsilon_i^{eq} = \Pi_i^0 \langle O_2^0 \rangle + \Pi_i^2 \langle O_2^2 \rangle + \Gamma_i \langle S_k \cdot S_l \rangle \qquad i = 1, 2, 3$$
(12)

where

$$\Pi_i^0 = -(\kappa_{i1}B_{10}^1 + \kappa_{i2}B_{20}^1 + \kappa_{i3}B_{30}^1)$$
(13a)

$$\Pi_i^2 = -(\kappa_{i1}B_{11}^1 + \kappa_{i2}B_{21}^1 + \kappa_{i3}B_{31}^1)$$
(13b)

$$\Gamma_{i} = \kappa_{i1}I_{1}\eta_{1}\xi_{1} + \kappa_{i2}I_{2}\eta_{2}\xi_{2} + \kappa_{i3}I_{3}\eta_{3}\xi_{3}.$$
(13c)

In (12),  $\varepsilon_1^{eq}$ ,  $\varepsilon_2^{eq}$  and  $\varepsilon_3^{eq}$  correspond to the relative change in lattice parameters  $\Delta c/c$ ,  $\Delta a/a$  and  $\Delta b/b$ , respectively, for the orthorhombic symmetry, in the same way as that [12] defined previously. Therefore, the observed anisotropic thermal expansion below  $T_{tr}$ is determined in terms of the temperature behaviour of  $\langle O_2^0 \rangle$ ,  $\langle O_2^2 \rangle$  and  $\langle S_k \cdot S_l \rangle$ . The above expressions are similar to those [10, 12] obtained previously except the presence of the third term in (12).

#### 4.3. Thermal expansion

From the present measurement of the lattice parameters for RZn<sub>2</sub> (R = Gd, Tb or Dy), the following features are obtained. (i) The anomalous thermal expansion is observed at the temperature which is associated with the appearance of magnetic orderings in all materials. (ii)  $\Delta a/a$  for GdZn<sub>2</sub> is small and negative while those for TbZn<sub>2</sub> and DyZn<sub>2</sub> are both large and positive. (iii)  $\Delta b/b$  for all RZn<sub>2</sub> is positive and it increases with varying R in the order R = Gd, Dy and Tb. (iv)  $\Delta c/c$  for GdZn<sub>2</sub> is positive while those for TbZn<sub>2</sub> and DyZn<sub>2</sub> are small and large negative, respectively. (v) The absolute value of the change in c,  $|\Delta c/c|$ , below  $T_{tr}$  increases with the number of 4f electrons for TbZn<sub>2</sub> (4f<sup>8</sup> for Tb<sup>3+</sup>) and DyZn<sub>2</sub> (4f<sup>9</sup> for Dy<sup>3+</sup>). (vi) The magnitude of  $\alpha_b$  above  $T_{tr}$  for RZn<sub>2</sub> decreases with varying R in the order R = Gd, Dy and Tb:  $\alpha_b$ (GdZn<sub>2</sub>) >  $\alpha_b$ (DyZn<sub>2</sub>) >  $\alpha_b$ (TbZn<sub>2</sub>). Here,  $T_{tr}$  represents collectively the magnetic transition temperature such as  $T_C$  or  $T_N$ . (vii) The value of  $\alpha_c$  above  $T_{tr}$  is of nearly the same order of magnitude in all materials investigated. Since there are many unknown parameters in (13) which determines the coefficients  $\Pi_t^0$ ,  $\Pi_t^2$  and  $\Gamma_t$ , we will qualitatively discuss the features (i)–(vii) in terms of (12).

The magnetic structures for TbZn<sub>2</sub> and DyZn<sub>2</sub> have been proposed where the magnetic moments for Tb and Dy atoms are ferromagnetically aligned within the *a-b* plane while they are antiferromagnetically stacked along the *c* direction [3, 5]. This implies that in both cases of TbZn<sub>2</sub> and DyZn<sub>2</sub> the signs of  $\varepsilon_1^{eq}$ ,  $\varepsilon_2^{eq}$  and  $\varepsilon_3^{eq}$  in the antiferromagnetic state are negative, positive and positive, respectively. This is consistent with the features (ii)–(iv) because in a band magnet the magnetic moments generally tend to become large when a cell volume expands. In comparison with the features (ii)–(iv) between ferromagnetic GdZn<sub>2</sub> and antiferromagnetic TbZn<sub>2</sub> and DyZn<sub>2</sub>, the signs of  $\varepsilon_1^{eq}$  and  $\varepsilon_2^{eq}$  are opposite but that of  $\varepsilon_3^{eq}$  is the same. According to (12), the magnitude of  $\varepsilon_i^{eq}$  may be determined in terms of the relative magnitude of  $\Pi_i^0$ ,  $\Pi_i^2$  and  $\Gamma_i$ ; if  $\Pi_i^0$ ,  $\Pi_i^2$  and  $\Gamma_i$  contribute positively,  $\varepsilon_i^{eq}$ may become large in comparison with that of the unstrained state and if they contribute negatively it may become small. In the case of GdZn<sub>2</sub>, the anisotropic thermal expansion may be explained if the signs of coefficients in the third term of (12) are  $\Gamma_1 > 0$ ,  $\Gamma_2 < 0$  and  $\Gamma_3 > 0$ . Here, the temperature dependence of  $\langle S_k \cdot S_l \rangle$  is assumed to be a smooth function of T. Under this situation, it seems that the Gd moments in GdZn<sub>2</sub> are antiferromagnetically aligned along the *a* direction while they are ferromagnetically aligned along the *b* and *c* ones. Such an expected alignment of magnetic moments in GdZn<sub>2</sub> may be opposite to the one which has been proposed [3,5] in TbZn<sub>2</sub> and DyZn<sub>2</sub>. This means that the crystal field effect plays an important role in the stability of the antiferromagnetic alignments of magnetic moments for R atoms observed in the ground state for TbZn<sub>2</sub> and DyZn<sub>2</sub>. From these situations for TbZn<sub>2</sub> and DyZn<sub>2</sub>, it is considered that the magnitude of  $\Pi_i^0$  and  $\Pi_2^2$  (i = 1, 2) is significantly larger than that of the corresponding  $\Gamma_i$ . When we take into account the features (ii) and (iv),  $\Pi_1^0$  and  $\Pi_1^2$  may have opposite sign while  $\Pi_2^0$  and  $\Pi_2^2$  have the same one.

The c(T) against T plots above  $T_{tr}$  for all materials investigated show a similar temperature dependence, as seen in figure 6. This suggests that the thermal expansion along the c direction in  $RZn_2$  is due to a common origin. The meaning of the magnetoelastic coupling parameters  $B_{i0}^1$  and  $B_{i1}^1$  corresponds to the strain derivative of the second-order CF parameters,  $B_{j0}^1 \sim \partial V_2^0 / \partial \varepsilon_j$  and  $B_{j1}^1 \sim \partial V_2^2 / \partial \varepsilon_j$ , respectively, which originate from two contributions, the ligands and the conduction electrons [24]. The former contribution is related to the electronic environment around the R<sup>3+</sup> ion and the latter one the electronic states of the conduction band which are modified by the strain. The study [24] of the magnetoelasticity in cubic rare earth intermetallic compounds DyCu and DyZn has suggested that the main difference in the contribution of the conduction electrons to the magnetoelastic coefficients for these compounds is the hybridized mixing between the conduction band and d orbitals; the predominant type of d orbital for DyCu and DyZn is the  $t_{2g}$  and the  $e_g$  type, respectively. The latter d orbital points in the c direction when we take the quantization axis as the z one. From the structural feature in the  $CeCu_2$ -type structure, the shortest distance corresponds to one between R and Zn atoms along the c axis. Hence, it is considered that the magnetoelastic coefficient along the c axis in RZn<sub>2</sub> depends strongly on the modification of the conduction band through the  $e_x$ -type d orbital. Therefore, the opposite signs of  $\Pi_1^0$ and  $\Pi_1^2$  may be due to the modification of conduction band along the c axis. Under these situations, the feature (v) can be understood in terms of the change in the relative magnitude of  $\Pi_1^0$  and  $\Pi_1^2$  with the number of 4f electrons.

For supplementary information, the feature (i) means that the stability of the ferromagnetic state in GdZn<sub>2</sub> is mainly realized accompanying with small negative contraction along the *a* direction and large positive expansion along the *b* and *c* ones with decreasing *T*. The thermal expansion behaviour concerning b(T) and c(T) has been similarly reported in the antiferromagnet GdCu<sub>2</sub> [25]. However, in GdCu<sub>2</sub>  $a(T < T_N)$  exhibits a large negative expansion as *T* decreases. This is remarkably different from the case of GdZn<sub>2</sub>. In comparison with the  $\theta_p$ -*r* plots for RZn<sub>2</sub> and RCu<sub>2</sub>, the value of  $\theta_p$  at  $r^b$  in GdZn<sub>2</sub> ( $r^b = 3.96$  Å) may be small and negative while in GdCu<sub>2</sub> ( $r^b = 3.79$  Å) it may be large and negative. This situation may be related to the small change in  $a(T < T_C)$  of GdZn<sub>2</sub>. In order to obtain further information on the crystal field and anisotropic thermal expansion, neutron diffraction studies of single-crystal RZn<sub>2</sub> are highly desired.

# 5. Conclusions

From the measurements of the powder x-ray diffraction patterns, the temperature dependence of the lattice parameters for RZn<sub>2</sub> (R = Gd, Tb and Dy) has shown the anisotropic thermal expansion behaviour along the a, b and c directions below  $T_{tr}$ . The positive expansion of b(T) below  $T_{tr}$  for all RZn<sub>2</sub> investigated is qualitatively explained in terms of the positive contribution to the thermal expansion which originates from the ferromagnetic exchange interaction between R atoms, together with the consideration of the  $\theta_p$ -r plots. In comparison with the thermal expansion for RZn<sub>2</sub> (R = Gd, Tb and Dy), the present results indicate the necessity of taking into account the magnetic exchange contribution besides the crystal field one. From these situations, we proposed a phenomenological model in which the total free energy consists of the magnetoelastic, elastic and anisotropic Heisenberg-type exchange ones in order to explain the anisotropic thermal expansion in the magnetic states. On the basis of the present model, the present results concerning the different behaviour in  $\Delta a/a$ ,  $\Delta b/b$  and  $\Delta c/c$  for RZn<sub>2</sub> could be explained in terms of the change in the signs of the phenomenological parameters  $\Pi_i^0$ ,  $\Pi_i^2$  and  $\Gamma_i$ .

## Acknowledgment

A part of this work was carried out under the visiting researcher's program of the Institute for Materials Research, Tohoku University.

#### References

- [1] Larson A C and Cromer D T 1961 Acta Crystallogr. 14 73
- [2] Debray D K, Wallace W E and Ryba E 1970 J. Less-Common Met. 22 19
- [3] Debray D, Sougi M and Meriel P 1972 J. Chem. Phys. 56 4325
- [4] Debray D, Wortmann B F and Methfessel S 1975 Phys. Status Solidi a 30 713
- [5] Ohashi M, Kitai T, Kaneko T, Yoshida H, Yamaguchi Y and Abe S 1990 J. Mugn. Magn. Mater. 90 & 91 585
- [6] Abe S, Kaneko T, Ohashi M, Nakagawa Y and Kitai T 1992 J. Magn. Magn. Mater. 104-107 1403
- [7] Hashimoto Y, Fujii H, Fujiwara H and Okamoto T 1979 J. Phys. Soc. Japan 47 67
- [8] Hashimoto Y, Fujii H, Fujiwara H and Okamoto T 1979 J. Phys. Soc. Japan 47 73
- [9] Gratz E, Loewenhaupt M, Divis M, Steiner W, Bauer E, Pillmayr N, Müller M, Nowotny H and Frick B 1991 J. Phys.: Condens. Matter 3 9297
- [10] Gratz E, Rotter M, Lindbaum A, Müller H, Bauer E and Kirchmayr H 1993 J. Phys.: Condens. Matter 5 567
- [11] Gratz E, Pillmayr N, Bauer E, Müller H, Barbara B and Loewenhaupt M 1990 J. Phys.: Condens. Matter 2 1485
- [12] Diviš M, Lukáč P and Sovoboda P 1990 J. Phys.: Condens. Matter 2 7569
- [13] Šima V, Diviš M, Sovobada P, Smetana Z, Zajac S and Bischof J 1989 J. Phys.: Condens. Matter 1 10153
- [14] Landolt-Börnstein New Series 1989 Group III, vol 19, ed N S Madelung (Berlin: Springer) p 53
- [15] Storm A R and Benson K E 1963 Acta Crystallogr. 16 701
- [16] Touloukian Y S, Kirby R K, Taylor R E and Desai P D 1977 Thermophysical Properties of Matter vol 12 (New York: Plenum) p 116
- [17] Kitai T 1995 J. Phys. Soc. Japan to be submitted
- [18] Hutchings M T 1964 Solid State Physics vol 16 (New York: Academic) p 227
- [19] Zvezdin A K, Matveev V M, Muchin A A and Popov A I 1985 Rare Earth Ions Magnetically Ordered Crystals (Moscow: Nauka) p 98
- [20] Nye J F 1957 Physical Properties of Crystals (Oxford: Clarendon) p 176
- [21] Levy P M, Morin P and Schmitt D 1979 Phys. Rev. Lett. 42 1417
- [22] Lines M E and Jones E D 1965 Phys. Rev. 139 A1313
- [23] Callen H B 1960 Thermodynamics (New York: Wiley) p 227
- [24] Morin P and Schmitt D 1981 Phys. Rev. B 23 2278
- [25] Borombaev M K, Levitin R Z, Markosyan A S, Reimer V A, Sinitsyn E V and Smetana Z 1987 Sov. Phys.-JETP 66 866